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ABSTRACT

A hybrid (non-ray, non-modal) method for computing the fields of a paraxial beam propagating in a multimode

waveguide (parallel-plate or dielectric slab) at large axial distances is presented. The method is based on the
Fourier and Presnel self-imaging properties of these waveguides, and is capable of high accuracy. The method is
much more efficient than ray or mode approaches, while qivinq complete field information which coupled-power
equations do not provide.

Introduction

Multimode optical fibers appear at present to be
the most common optical waveguiding medium for applica-
tions in the immediate future. Incoherent sources and
relatively simple detectors can be used, and the toler-
ance problems encountered with single-mode fibers are
far less severe with such waveguides.

At present, there are essentially three methods
available for field computation in multimode waveguides.
First, one can take a pure modal approach--the excita-

tion amplitude of each mode is computed, and all modes
are summed together. Although in principle exact, this
approach suffers not only from the large number of modes
which must be kept track of (100-1000 for a typical

fiber; 30 - 100 for a slab geometry) but also from a
large degree of cancellation of terms in the mode sum
when the field does not match that of an individual
mode. Although in some special cases approximate
closed-form results are available, a computer analysis
is generally required, and roundoff errors can be ex-
pected to accumulate, especially for large propagation
distances.

A second approach is that of geometrical optics
(sometimes encountered as the WKB method). An excel lent
discussion of this approach has been given by Gloge and
Marcatili [1]. Here one approximates the effect of a
large number of discrete propagating modes by a contin-
uously distributed propagation constant belonging to a
“continuous spectrum” of modes. The propagation prob-
lem then reduces to that of determining the amplitude
with which each of a cone of rays is excited, and
tracing it down the length of the guide. In a situation
where paraxial propagation conditions exist (see below),
a large number of rays can be expected to contribute
at large propagation distances (hundreds of meters or
several kilometers may not be uncommon). In this
region, the geometrical optics approach can be seen to
suffer from similar disadvantages as does the first.

A third approach is a purely numerical one, where-
in the partial differential equation is tackled direct-
ly, without the use of either mode or ray concepts.
This method, like the first, is also capable of arbi-
trary accuracy in principle, rind requires neither a

detailed knowledge of a large number of modes, nor the
tracing of a large number of ray paths. Again, however,
when very long propagation distances are being studied,
the discretication of the wave equation in the longi-
tudinal direction can lead to large error accumulations
which do not seem easily avoidable by this technique.

Finally, we might also mention here the coupled-
power equations approach [2]. This method seeks only
to find the total power carried by each mode, since for
many applications the details of the field distribution
from each mode are not of interest. One then takes a
statistical approach to these equations, and obtains
useful results for pulse dispersion when each mode of
the guide is detectable only through its total power.

There are many other applications, however, when the
fields themselves are important, such as in the design
of couplers, splitters, switches, splicers, etc., and
it is this problem in which we are interested here.

The method we propose is based on the imaging prop-
erties of multimode waveguides. In the paraxial approx-
imation, a parallel-plate or dielectric slab waveguide
will periodically reconstruct the field pattern at the
input plane (and, at more frequent intervals, a string
of such replicas). Because of this, we need only per-
form our field computations within the space of one of
these periods, and will not suffer the loss of accuracy
at large distances associated with the methods described
above. Our computations will be performed for a parallel
plate waveguide with perfectly conducting walls, but the
results are immediately applicable to the dielectric
slab waveguide. The method will allow a simple formula
to be obtained for the propagation of a Gaussian beam of
substantially narrower width than that of the guide.

The Paraxial Approximation

To fix ideas, let us consider the parallel-plate
waveguide illustrated in Fig.1. The walls at X=O and
x=a are perfectly conducting, and some known source

produces a given excitation or input field at the plane
Z=o. For simplicity, we restrict ourselves to two-
cjimensional, TE-fields, so that the entire field
H=~xHx+~zHz, E=5YEY, where ~x,~ .S are Cartesian{z
unit vectors, can be derived from he--scalar function
Ev which satisfies

(1)

for z>O. Here k=ofi, where a time dependence exp(iwt)
has been assumed, and u,c are the electrical parameters
of the medium filling the waveguide.

In the paraxial approximation, we write

Ev(z,x) =e
-ikz

A(x,z) (2)
.

and assume that most propagation takes place nearly in
the z-direction; that is, A(x,z) as a function of z
varies slowly compared to exp(-ikz). Inserting (2) into
(1) WQ obtain

(32 2

~
-2ik&+~

)
A(x,z) = O

az

(3)

and in the paraxial approximation, we neglect the b2/az2
term compared to the first derivative term because of
the slow variation of A(x,z) in z assumed above. We
thus obtain the following parabolic equation for
A(x,z)[3]: .

($.2jk-?- )2Z A(x,z) = O (4)

To put this approximation on a more quantitative footing,
we can apply some ideas from the boundary-layer tech-
nique [4].
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Using these techniques, it can be shown that a criterion
for the accuracy of the paraxial approximation is that

kz<<(ka)4 (5)

In addition, of course, we also have the condition

kzaz>>l, which is implicit in tlie fact that the guide

is highly multimode.

It can be shown [5] that a multimode dielectirc
slab waveguide of width b, core indexnl and cladding
index nz can be replaced by an equivalent arallel-

+plate waveguide of width a=b(l+2/ko n~-n~b) in the
paraxial approximation, where k is the wavenumber of
free space. Our results for th~ parallel-plate wave-
guide can then be directly applied to the case of a
simple optical waveguide.

Green’s Function and Imaging

By well-known techniques, the field E (x,z) for
z>O in the waveguide can be expressed in {erms of the
field EY(x,O) at an input plane (z=O) by means of a
Green’s function G(x,x’;z):

J

a

EY(x,Z)= ~Ey(x’,O)G(x,x’ ;z)dx” (6)

The Green’s function Go for the paraxial approximation
(2),(4) to EY is given by:

“2 -ikz rn
Go(x,x’;z) =;e ~ sin ~ sin ~~zm2n2/2ka2

m=1
(7)

If we define z,, =4ka2/n, then
II

2mim2z/zll
GO(X,X’;Z) =&-e-ikz ?e

{

e-imm(x-x’)/a

~.=
..

- e-im(x+x’ )/a !’ (8)
Equation (8) is the basis for the so-calle~~ ‘ “

Fourier-and Fresnel-imaging properties of this wave-
guide [6]. It is easily seen from (8 ) that exp(ikz)Go
is a periodic function of z:

-ikzllGo(x,x’’;z+z,, ) = Go(.x,x’;z)e
(9)

In particular, since (6) implies that G(x,x’;O) is
equal to 6(x-x’) for O<x, x’ <a, we have

Go(x>x”; q,) = d(x-x’)e -iknzll
(lo)

for any integer n, i.e., the input plane field is repli-
cated at each of the Fourier image planes Z=nz[ . This

iFourier imaging property of waveguides was appar ntly
first noticed by Rivlin and Shul ’dyaev [7] and dis-
cussed at length by a number of authors [5]-[12].

An even more interesting occurrence shows up at

‘ ‘Pq
, where

and p and
the sum

.I1
‘pq q ’11

(11)

q are some positive integers. Let us consid~

Qpq(x) = f e
-imnx/a+2njm2z /z

pq 11
m.- ~ (12)

Letting m=p!, +r, where r runs from O to p-1, and using
the Poisson sum formula,

z p-1
Qpq(x] = ~ ~0 ~-irrx/a + 2niqr2/p m~ a(x-~;) ~,3)

r- n= -CO

from (8), then we have
-i k,z

Go(.x,x’;zpq)=e p~ y Cn(p,q)[ti(x-x’’ .y) -6(x+x’
n. -Cu

-~ )1 (14)

where the coefficients Cn are given by

, p-l
cn(p,q) = ~ ~ e2~ir(rq+n)/p (15)

~ p~
For p=l, only one of the delta-functions, 6(x-x’),

is nonzero in the range O< (x,x’) <a, and we recover
the single Fourier image d~scribe~before. If p >1 on

the other hand, more of the delta-functions in (14) may
appear in this range. Each one contributes to (6) a
replica of the input field which is shifted by some
amount in the x-direction, and whose amplitude is
IC (p,q) I times that of the original image. Any terms
ar?sing from the terms 6(x+x’’ -2np)p) are inverted as
well. Images of this type have been called Fresnel
images.

For an input function not symmetric with respect
to the center of the guide x=a/2, we have depicted the
various images along with their (complex) amplitudes in
Fig. 2 for z21, Z31 and z41.

Propagation of a Gaussian Beam

Consider the initial field distribution

-(x-xo)2/2w:
EY(x,o) = e (16)

i.e., a Gaussian beam centered at X. with waist para-

meter Wo. Let O<xQ<a, and assume that the “tails” of
the beam are negligible at the walls of the guide:

We<< x ; wo<<a. -X

In addition, we a?so suppose that”the beam is well colli-
mated, kwo <<1. Under these conditions and the parax-
ial approximation, (6) can be replaced by

\

m -( X’-XO)+2W$
EY(x,z) = e

Go(x,x’;z)dx’ (17). .

Equation (17) impl~es an input field at z=O which con-
sists not only of the original beam (16), but also of
an infinite series of “mirror images” of the original
beam, reflected in the upper and lower walls of the
guide. Only the (very small amplitude) tails of the
mirror images are present within the waveguide (O~xSa).
We wish to evaluate (17) for arbitrary (not necessarily
rational ) values of z/zll .

The value of (17) can be expressed in terms of
Jacobian theta-functions [13] whose properties can be
used to obtain the exwession:
Ey(x,z)

..*. e-ikz

[

n~_mCE(p,q) e
-(x-xo-2na/p)2/2 f2(Azp)

,(18)

)-(x-xo-2na/p)2/2f2 (Azp)
-e

where c (p, q) is given by (15). Equation (18) repre-
sents anstring of Fresnel images at z=zpq, which have
each propagated an additional distance AZP(SO that

+Az ) and broadened as they would in free space.
‘=Z?””:We m fllmlz the broadening of the beam by restricting

2 <Az <Z /2p-zll/ P– p– 11 (19)

The “complex waist parameter” f(Azp) is defined as

f2(Az)=w~-iAzp/k (20)

The situation is illustrated in Fig. 3. AS AZ in-
creases, more and more of the “mirror image” be!ms con-

tribute significantly to the field in O~xSa. The
integer p should be chosen to be on the order of a/w.
to achieve maximum computational efficiency.

?iumerical Results

In Figure 4, we have traced the progress of a
Gaussian beam with kw =110.3 in a waveguide with ka =
973.4 for selected va?ues of z/zll between O and lN.
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It is seen that an appropriate value for p in this [7]

case is no more than about 6. In Fig. 5, an exact

modal and approximate field co~putation is shown for a
larger axial distance. It can be seen that even for [8]
z IJZ50Z11 , the paraxial approximation holds UP quite
well . For typical optical waveguide parameters, this
could correspond to a length of about 50m or so. [9]
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Fig. 2: Imaging of a nonsymmetrical field distribution. o~o
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(C) EY(x>z31). (d) Ej(x>z41). Fig. 5: Exact and approximate power patterns, ka =1538.23;
kwo = 174.3;

“Z1l
= 250.119.
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